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Abstract. A magnetic equation of state or magnetic constitutive equation, in functional form 
H = H ( M ,  M ) ,  has been developed by analogy with a mechanical constitutive equation of 
crystal plasticity. It is shown that magnetisation kinetics, i.e. the dependence of mag- 
netisation on magnetic field and time, may be conveniently described in terms of solutions 
of the magnetic constitutive equation subject to given magnetic field constraints. 

Two experimental methods of investigating the phenomenon of magnetic viscosity, in 
which time variations of intensity of magnetisation are observed, are analysed. The results, 
from which magnetic viscosity parameters and hence values of the activation volumes 
involved in irreversible magnetisation processes are determined, are identical with the 
expressions previously derived in terms of activation energy distributions. The definitions 
of the magnetic susceptibilities involved in the earlier work are arbitrary; they are precisely 
defined in the present work. 

1. Introduction 

The mechanisms responsible for the magnetisation kinetics and the coercivity of ferro- 
magnetic materials are formally similar to the mechanisms that govern the plasticity and 
strength of solid solutions or two-phase alloys (Haasen 1972). The holomagnetisation 
of a magnetic material depends on the applied magnetic field and on time, and results 
from reversible and irreversible movement of domain boundary walls and spontaneous 
magnetisation vectors. 

NCel(1946) developed a general theory of coercivity by considering the constraints 
imposed on domain wall motion by lattice defects caused by internal stress and inclusions. 
Stoner and Wohlfarth (1948) showed that high coercivities are exhibited by assemblies 
of non-interacting single-domain particles due to the inhibiting effect of shape or mag- 
netocrystalline anisotropies on the rotation of domain magnetisation vectors. All mag- 
netic materials exhibit magnetic viscosity-the time dependence of intensity of 
magnetisation under constant applied field conditions. Preisach (1935), Nee1 (1949) and 
Street and Woolley (1949) discussed magnetic viscosity in terms of the thermal activation 
of magnetisation processes. 

The holistic mechanical analogues of the reversible and irreversible changes in 
intensity of magnetisation are respectively the elastic and plastic components of strain. 
The latter component is related at the microscopic level to the motion of dislocations. 
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Siemers and Nembach (1979) developed this analogy and considered a model of 
thermally activated domain wall mobility using a number of plausible potential functions 
to describe the interaction of a domain wall with pinning centres. A more elaborate 
theory taking into account the statistical distribution of pinning centres and the flexibility 
of domain boundary walls was developed by Gaunt (1983) by analogy with statistical 
theories of dislocation motion through a random array of obstacles. 

The theories of Seimers and Nembach, Gaunt and others led to satisfactory descrip- 
tions of the motion of individual domain boundary walls. However, a further step is 
required to predict the macroscopic magnetisation kinetics as a summation of collective 
domain wall behaviour. We show in this paper that the procedures already well estab- 
lished to account for macroscopic mechanical stress/strain observations may also be 
applied by analogy to describe macroscopic magnetisation kinetics. 

In dislocation theory extension from the microscopic to the macroscopic level of 
description is achieved by utilising the Orowan relation between the plastic strain rate d 
and the average individual dislocation velocity, v d :  

d = VbpVd (1) 

where b and p denote respectively the magnitude of the Burgers vector and the density 
of mobile dislocations, and cp is a geometrical factor. When the deformation rate is 
limited by the rate of dislocation generation, p ,  the product p d  in (1) may be replaced 
by pL,  where L is the dislocation mean free path (Mecking and Lucke 1970). 

The dislocation velocity, u d ,  or p may be represented in the form of an Arrhenius 
relation which leads to 

8 = do exp( -AG(a) / kT)  (2) 

AG( a) equals the Gibbs free energy of activation which results from a complex averaging 
over many thermally activated events; a is the stress acting on the dislocations, Tis the 
absolute temperature, k equals the Boltzmann constant and io is a pre-exponential 
coefficient which is essentially independent of stress and temperature. In general AG(a)  
cannot be calculated ab initio and has to be considered as some phenomenological 
average that depends on the state of the material, i.e. it may implicitly depend on some 
internal variable or variables. 

Macroscopic plastic deformation under various conditions of straining is very con- 
veniently described in terms of constitutive relations, or mechanical equations of state. 
It is assumed that there exists a unique relation between such mechanical quantities as 
plastic strain rate, stress and the plastic strain, which is independent of previous loading 
history. 

In differential form (Hart 1967) this relation may be written as 

d o =  v d e + A d l n d  (3) 

where d = ( d a / d  In d)E is the strain rate sensitivity (SRS) of the stress at constant plastic 
strain and v = ( d a / d ~ ) ~  is the strain hardening rate. The SRS characterises the instan- 
taneous mechanical response of a material and the strain hardening rate represents the 
evolution of mechanical strength with plastic strain. 

From equation (2) 

A = kT/V* (4) 

where V* = (-d(AG>/da)lB is the activation volume. 
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Values of A. may be derived from the results of experiments involving rapid changes 
in strain rate and v-values may be calculated from the results of experiments carried out 
under constant strain rate conditions. In general both v and A. are found to be functions 
of (5 and i. The mechanical behaviour of a specimen under various modes of straining, in 
particular under constant stress conditions (creep), may be predicted from the functional 
dependences of v and A (Mecking et a1 1988). 

2. The nfagnetic constitutive relation 

The development, by analogy with the mechanical case outlined above, of a magnetic 
equation of state or constitutive relation is based on the assumption that there is a unique 
relationship between magnetic field, magnetisation and rate of change of magnetisation 
with time. The magnetic field acting within a specimen Hi is related to the applied 
magnetic field Ha by the expression 

Hi Ha - DM,,, ( 5 )  
where D equals the demagnetisation factor of the specimen and MI,, is the total intensity 
of magnetisation. Hi and M,,, are uniform within specimens in the form of ellipsoids of 
revolution. 

The total intensity of magnetisation has reversible and irreversible components, M,,, 
and Mirr, respectively (Street et a1 1952). This distinction parallels the division of total 
strain into (reversible) elastic and (irreversible) plastic parts. It is the plastic strain 
and its time derivative that enter the mechanical constitutive equation (equation (3)). 
Analogy with plastic deformation requires the magnetic constitutive relation to be 
expressed in terms of the irreversible intensity of magnetisation, Mi,,, and its time 
derivative, Mir,: 

or, in differential form, 

dHi  = (l/x&) dMi,, + A d(ln k,,,) (7) 

where 

and 

xirr is the intrinsicirreversible magnetic susceptibility (i.e. corrected for demagnetisation 
effects) determined at constant time rate of change of intensity of magnetisation. Agives 
the dependence of the rate of change of intensity of magnetisation on internal field and 
may be determined by measuring the change in k ( M ,  + M 2 )  produced by a change in 
Hi from H1 to H2 from 

A = ( H ~  - H l ) / l n ( k 2 / k l ) .  (10) 

As in the mechanical case A may be related to the activation volume involved in the 
process of magnetisation. The individual domain wall velocity and the rates of nucleation 
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of domains of reverse magnetisation and of unpinning domain walls from pinning centres 
are controlled by an Arrhenius relation such that 

klrr = ko exp( -AG(Hi)/kT). (11) 

Combining equations (9) and (11) yields: 

A = -kT/(  a AG(Hi)/aHi) I M,,, . 
As in the mechanical case dAG(Hi)/dHi is related to U ,  the volume involved in the 
activation process (Siemers and Nembach 1979, Street et a1 1987) and may be written as 

4 = -(aAG(Hi>/aHi)/,i,, = V M ~ U  (13) 

where I) is a numerical factor dependent on the type and geometry of the microscopic 
magnetisation process involved and M ,  is the spontaneous magnetisation of the material. 

3. Applications 

The constitutive relation (7) may be applied to describe magnetisation behaviour under 
various imposed conditions. As an example we consider the phenomenon of magnetic 
viscosity and the results of the analyses of the time dependence of magnetisation under 
various applied field conditions given by Street and Woolley (1949), Street et a1 (1952) 
and Street et a1 (1987). 

When the magnetic field applied to a ferromagnet is changed discontinuously at time 
t = 0 the observed variation of intensity of magnetisation varies approximately as 

M ( t )  = constant + S ( D )  In t (14) 
when Ha = constant fort  > 0. The coefficient S ( D )  has been shown to be a function inter 
alia of the demagnetisation factor, D ,  of the specimen (Street et a1 1952, Barbier 1954). 

The constitutive relation (7) may be written for constant Ha conditions (i.e. Ha = 0) 
as : 

ki = (l/X;rr)kirr + A M i r r / k i r r  (15) 

HI = - D k t o t  (16) 

M i r r  = k t o t  - k r e v  = k t o t  - X i e v H i  = ktot(1 + DX:ev) (17) 

[(I + DX:Ot)/X:rrl~tot  + A M t O t M t O t  = 0 

with 

(from equation (5)). Now 

where x:," is the reversible component of intrinsic susceptibility. Substituting from (16) 
and (17) in (15) gives 

(18) 
using the relation x ; , ~  = x:," + xirr. Equation (18) may be integrated, assuming the 
susceptibilities and A are independent of M during a magnetic viscosity experiment, to 
give 

k t o t  = &init / ( l  + Kkinitt) (19) 

and 
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M,,, = M,,~, + (I/K) ln(1 + ~ k ~ ~ ~ ~ t )  

M,,, = constant + (1/K) In t. 

(20) 

(21) 

where K = (1 + Dxi,,)/Axi,,. For values o f t  % l /Kkin i t  equation (20) becomes 

Comparison of equations (21) and (14) shows that S ( D )  = Axirr/(l + &io,) or, trans- 
forming to directly observable susceptibilities, xa (measured at constant kirr), using 
expressions of the form xi = xa/( 1 - Dxa) gives 

S ( D )  = A(x:ot - x ; e v ) / < l  - D x ; e v ) *  (22) 
Equation (22) is the same expression as that derived by Street et a1 (1987) utilising a 
different model for describing magnetic viscosity. 

Equation (22) (Street et a1 1987, Shi et a1 1987) and a truncated form omitting the 
(1 - factor (Givord et a1 1987, Street et a1 1952) have been used extensively to 
calculate A and hence the activation volumes (equations (12) and (13)). However, the 
susceptibilities have not been precisely defined. The derivation given above of equation 
(22) shows that the appropriate values of the susceptibilities are those obtained from 
magnetisation versus magnetic field curves taken at constant Mirr. 

Street et a1 (1952) obtained an expression for A in terms of parameters observed 
during field jump experiments in which the applied field is changed discontinuously by 
AHa at a time t ,  % S/kinit during a magnetic viscosity experiment. 

We denote the time variation of magnetisation for times t < tl  by k,(t) and that for 
t > t l  by hi2(t). Equation (19) may be written as 

k* = S/[S/k:,it + ( t  - t l ) ]  (23) 
where k/ni, is the initial value of k2 at t = t l .  Equation (23) may be transformed to 
k, = S/(to + t )  defining to as S/klnit - t l .  Thus the rate of change of magnetisation 
immediately after AHa is applied is 

hi, = S/( to  + t l ) .  (24) 

k, = s/t,. (25) 

The rate of change of magnetisation immediately before AHa occurs is 

Substituting from equations (25) and (24) in (10) gives A = AHa/ln[tl/(t, + to)]  which is 
exactly the result derived by Street et a1 (1952). 

As an illustration of the above analysis we have calculated A and xi,, from magnetic 
viscosity data obtained under constant Ha conditions by Street etal (1989) using a sample 
of hot-pressed isotropic NdFeB. The (Mirr)hlrr versus Hi curves shown in figure 1 were 
constructed from these data. An example of the variation.of xi,,/n; versus Mi,, is shown 
in figure 2. Two sets of data corresponding to two rates Mi,, differing by a factor of 40 
are plotted on this graph. The two sets lie on a common curve, indicating that xi,,In; is a 
function of Mirr only and is independent of kirr. In contrast, xi,, I f  versus Hi curves depend 
on t (see, e.g., Street et a1 1987, Viadieu etal 1989). However, when plotted as a function 
of Mi,, all values of xirr 1 lie on a common curve independent of t .  

Values of A are plotted as a function of Mirr in figure 3. Also shown in this figure are 
values of A (= k T / q ,  from equations (12) and (13) above), calculated from the same 
data, using equation (22) with xfOt computed from Mt=30s versus Ha curves. With this 
choice of constant time the two sets of variations in A are in good agreement. However, 
the agreement becomes worse for choices of constant time of say 10 s or 100 s. The good 
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Figure 3. The variation of A as a function of M,,,:  
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Figure 2. xIrr versus Mi,, for two different rates of 
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I  
, . , . I  

-400 -300 -200 

Mirr ( 6 

Figure 2. xIrr versus M,,, for two different rates of 
change of M,,, (in G s-l): +, 1.0: 0,0 .025 .  

agreement between the two methods for t = 30 s is due to the dependence on MI,, of S 
(Street eta1 1987), i.e. theM,,,versusln(t) curves arenot strictlylinear. As aconsequence, 
the value of S calculated from a particular curve is associated with the mean of the range 
of relaxation times used in the experiment, which was 30 s (Street et a1 1987). Of course 
this problem does not arise in the direct determination of A from equation (10). These 
effects will be discussed more fully elsewhere. 

4. Conclusions 

We have shown that the postulate of a magnetic constitutive equation of the functional 
form Hi = Hi(Mi,,, Mi,,), analogous to a mechanical constitutive equation of crystal 
plasticity, makes it possible to predict magnetisation kinetics under diverse imposed 
magnetic field conditions. From this it is possible to define experimental procedures 
involving the traversal of magnetisation curves at constant M from which values of the 
quantity A may be determined directly. The magnitudes of the activation volumes that 
are involved in irreversible magnetisation processes at each point of a magnetisation 
curve may then be measured. 
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The response of the intensity of magnetisation to other applied magnetic field 
regimes, e.g. involving continuous or alternating variations, may also be analysed using 
the magnetic constitutive equation. 
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